If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+9.9x-4.9x^2=0
a = -4.9; b = 9.9; c = +2;
Δ = b2-4ac
Δ = 9.92-4·(-4.9)·2
Δ = 137.21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9.9)-\sqrt{137.21}}{2*-4.9}=\frac{-9.9-\sqrt{137.21}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9.9)+\sqrt{137.21}}{2*-4.9}=\frac{-9.9+\sqrt{137.21}}{-9.8} $
| 4q+3q=16 | | 20t-15t=15 | | 4x/3=180 | | x+7.8=-1.2 | | 3x=-6/7 | | -25=-(5/2)w | | W(-3/2)+(4/3)=w(5/6)+(1/3) | | 8x-6+-8x=1 | | 2k+5=5k | | 9+k=12 | | 1/4m+3=8m | | p^2+2p+1=16 | | 4+4x=2(-x+9)-26 | | 2x-1.8=2.; | | 84=x-1/5x | | 38=6x−4 | | 3x2+5x=19 | | p^+2p+1=16 | | –80=–5n | | 6g=-7 | | 10-y=2y-10 | | 20-y=2y-20 | | 9(x+5)-20=64 | | r−23=9 | | -4x-36=32 | | –9(a–5)=–18 | | y-3.45=9.35 | | x-10)/3=-4 | | x-(10/3)=-4 | | 8x+96=64 | | 5.5h+20=6.75+10 | | 2x+36=30 |